
February 1994 Report No. STAN-CS-TR-94-1506

II
PB96-150354

Optimized Memory-Based Messaging: Leveraging the
Memory System for High-Performance Communication

by

David R. Cheriton and Robert A. Kutter

Department of Computer Science

Stanford University
Stanford, California 94305

I Approved tai jyurjÜD release

'TfcTWUl-i.mmu—««.—. .

19970630 074
/l'xü CyJAiAxi; 1HI,.,LSOI11B I

REPORT DOCUMENTATION PAGE
OMt Ma. 0704-OIM

1. AGENCY USI OW.T (UM* MM« 2. REPORT OATI
February 1994

3. REPORT TYPI ANO OATU COVERED

4. TITll AMD SUBTITLE

Optimized Memory-Based Messaging: Leveraging the Memory
System for High-Performance Communication

&. AUTHOR»)

David R. Cheriton and Robert A. Kutter

7. PERFORMING ORGANIZATION NAME(S} AW5 A9DRESS(ES)

Computer Science Department
Stanford University
Stanford, CA 94305

J. SPONSORING/MONITORING AGENCY NAMI(S) AN9 AODRESS(ES)

ARPA
3701 North Fairfax Drive
Arlington, VA 22203-1714

S. njNMHG NUMMRS

t. PERFORMING ORGANIZATION
REPORT NUMRER

STAN-CS-TR-94-1506

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unlimited

13. ABSTRACT (MSMimum 200 worm)

12b. DISTRIBUTION COOE

Memory-based messaging, passing messages between programs using shared memory, is a recog-
nized technique for efficient communication that takes advantage of memory system performance.
However, the conventional operating system support for this approach is inefficient, especially for
large-scale multiprocessor interconnects, and is too complex to effectively support in hardware.

This paper describes hardware and software optimizations for memory-based messaging that
efficiently exploit the mechanisms of the memory system to provide superior communication perfor-
mance. We describe the overall model of optimized memory-based messaging, its implementation
in an operating system kernel and hardware support for this approach in a scalable multiprocessor
architecture. The optimizations include address-valued signals, message-oriented memory consis-
tency and automatic signaling on write. Performance evaluations show these extensions provide
a three-to-five-fold improvement in communication performance over a comparable software-only
implementation.

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

NSN 7S40-01-280-S500

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES
24

It. PRICE CODE

20. LIMITATION OF ABSTRACT

St»nc«rfl Form *99 i**v J
'••*>• etc r. iNS >•: :3« '

Optimized Memory-Based Messaging:
Leveraging the Memory System for High-Performance

Communication

David R. Cheriton* and Robert A. Kutter1"
Computer Science Department

Stanford University

1 Abstract
Memory-based messaging, passing messages between programs using shared memory, is a recog-
nized technique for efficient communication that takes advantage of memory system performance.
However, the conventional operating system support for this approach is inefficient, especially for
large-scale multiprocessor interconnects, and is too complex to effectively support in hardware.

This paper describes hardware and software optimizations for memory-based messaging that
efficiently exploit the mechanisms of the memory system to provide superior communication perfor-
mance. We describe the overall model of optimized memory-based messaging, its implementation
in an operating system kernel and hardware support for this approach in a scalable multiprocessor
architecture. The optimizations include address-valued signals, message-oriented memory consis-
tency and automatic signaling on write. Performance evaluations show these extensions provide
a three-to-five-fold improvement in communication performance over a comparable software-only
implement ation.

2 Introduction
Communication facilities are a performance-critical aspect of operating systems and their support-
ing hardware platforms, strongly influencing the modularity with which sophisticated applications
can be constructed. Most IPC and RPC systems have focused on the copy, or pass-by-value, model
of communication. The data to be communicated is passed to a message-passing primitive that
logically copies the data to the recipient(s). Although the copy model provides safe and simple
semantics, the cost of data copying is significant in many systems [15, 17, 22], especially for larger
data units. This cost can be reduced, to some degree, by providing virtual memory system support
to remap data, rather than copy it, and by providing a copy-on-write mechanism to preserve copy
semantics (e.g., Accent and Mach [1]).

As an alternative, memory-based messaging uses a shared memory communication area between
processes, as illustrated in Fig. 1. A shared memory segment is created to act as a communication
channel, the source and destination processes bind this segment into their respective address spaces,
messages are written to this segment and, messages are read from this segment after some form
of notification at the destination(s). This approach has been used by a variety of commercial
applications using the shared memory mapping facilities in Unix System V [2].1 It has also been

*cheriton@pescadero.st anford.edu
'kutter@pescadero.stanford.edu
1 Unix is a trademark of Unix System Laboratories

Sender
Virtual Address Space

Shared
Segment

Receiver
Virtual Address Space

Kernel
Notification
Mechanism

.-''

Shared Message
Region

Shared Message
Region

**••-.

Figure 1: Two processes communicating through shared memory

used in some research systems, including the Berkeley DASH project [25] and URPC [3]. Several
trends suggest the need for further improvement of communication support.

First, several applications require high input /output performance, placing demands on commu-
nication system facilities. For example, moving video from a network interface to a multimedia
application and then onto a display requires more communication bandwidth than conventional
approaches have been designed to provide. With gigabit networks, direct video input, disk strip-
ing [20], cylinder caching and solid-state disks improving the device performance, this internal
communication system could be the bottleneck.

Second, parallel applications require a high-performance communication facility to optimize
for situations in which function shipping is intrinsically more efficient than data shipping. For
example, many parallel programs are structured in a work queue model in which processes allocate
work from a shared work queue. With this structure and an efficient messaging mechanism, it is
more efficient in memory traffic for the processors to communicate by messages with a processor
running this allocator than trapping the code and data associated with the allocator into its cache
and then executing the allocator itself, incurring the delay and memory overload of shared memory
consistency. (The requesting processor is unlikely to have been the last to execute this allocator.)
Support for communication-based function-shipping of this nature is particularly important in
large-scale parallel systems. In fact, the benefits of shared memory in ease of programming and
messaging for efficiency argue for combined shared memory and message-passing architectures. Our
memory-based messaging approach naturally supports such a combined model.

Third, in a system structured as a micro-kernel with protected, user-level servers, an efficient
communication system is needed to allow access to system services and implementation of those
system services without a significant performance penalty. For example, an application file open
operation may access a directory service, a file server and a caching service, thus incurring the cost
of several protected inter-address space communications rather than a single kernel trap, as with a
conventional monolithic kernel. The modular and protected structure of the micro-kernel approach
seems particularly beneficial for large-scale systems, where it is not acceptable to have a single error
in "the operating system" bring down the whole machine.

Unfortunately, the performance of communication systems implemented using standard shared
memory techniques decreases with larger-scale memory systems for several reasons. First, the cost
of copying data in these machines increases because of the poor cache behavior of copying [24]
and the increasing ratio of processor speed to average memory access time. Second, the cost

of remapping data in multiprocessor systems, as an alternative to copying, is greater than in
uniprocessors [4, 21] because of the need to update or invalidate the TLB or page table in each
processor. Finally, the locking, queuing and notification on shared data structures such as message
buffers and queues is far more expensive because of the increased memory latency in large-scale
parallel machines. These effects are most pronounced with large-scale systems. However, they are
significant even in small-scale systems because of the increased ratio of processor speed to memory
access time. Based on these considerations, some special-purpose parallel computing architectures
use specialized communication hardware that operates fairly independent of the memory system.
However, this approach is not cost-effective in mainstream architectures.

The mainstream computer architecture community emphasizes optimizing the memory system
rather than the communication facilities for several (good) reasons. First, memory is well-recognized
as the primary bottleneck to the performance of fast RISC processors. Most applications make far
greater demands on the memory system than on the communication facilities so it be better to
use the chip real-estate for larger on-chip caches that special-purpose communication support.
Second, most systems are small in scale so there is limited market for machines that really require
this communication support. In fact, for the foreseeable future, the number of multiprocessors
will almost certainly remain vanishingly small compared to the number of uniprocessor systems.
Finally and related to be above, most processor designers avoid less-proven and less standardized
features, if for no other reason than to minimize design time. With the cost, reliability and time-to-
market issues strongly driving this market, hardware and operating systems designers are expected
to remain focused on basic memory system performance, and it appears unrealistic to expect a
significant effort or expenditure purely to provide improved communication support.

With these concerns in mind, our strategy is to integrate the communication support into the
memory system, both at the operating system and hardware level, effectively piggybacking commu-
nication performance improvements on improvement to the memory system. The result, optimized
memory-based messaging uses the basic memory-based messaging model, but with three key opti-
mizations. This paper presents these optimizations, how they are implemented by a combination
of software and hardware in an operating system kernel and multiprocessor hardware system we
have developed, and measurements of the performance of this system. We also include the results
of analysis and simulation to predict the benefits of this approach for future machines, which are
expected to have larger numbers of faster processors, larger memory systems and faster intercon-
nection mechanisms.

The next section presents the memory-based messaging optimizations and the relevant details of
their hardware and software implementation in an extended version of the V distributed system [9]
and the ParaDiGM multiprocessor [11]. Section 4 describes our RPC implementation. Section 5
presents our measurements of this configuration. Section 6 describes the results of our analysis and
simulation to determine the benefits of optimized memory-based messaging on some possible future
computer systems. Section 7 describes previous research we see as relevant to this work. We close
with a summary of the work, our conclusions and some indication of future work.

3 Optimized Memory-Based Messaging
Optimized memory-based messaging incorporates with three key optimizations over the basic mech-
anism shown in Fig. 1 namely:

• Address-valued signals

• Message-oriented memory consistency

• Automatic signal-on-write

Address-valued signals provide efficient, low-latency notification of message reception at the re-
ceivers). Message-oriented memory consistency reduces the transmission cost of message data
through the memory system from sender to receiver(s). Automatic signal-on-write minimizes the
sender cost of generating the signal. The following subsections describe these refinements and their
implementation in detail. We show that these optimizations provide a simple and fast implemen-
tation, especially for scalable multiprocessor architectures.

3.1 Address-valued Signaling
An address-valued signal is a signal that transmits a single address value from the signaling process
to one or more receiving processes, delivering the signal to a signal handler function with a single
parameter, the address value. This facility contrasts to Unix signals and typical hardware inter-
rupts, which do not allow a value to be transmitted. It also contrasts with conventional messaging
that supports large, variable-sized data transfer with attendant complexity and performance costs.

The transmitted address value is translated before delivery from the virtual address provided
by the signaling process to the corresponding virtual address in the address space of the receiving
process, as illustrated in Fig 2. As shown in this figure, a signal specifying a virtual address in
the shared memory region2 is mapped to the corresponding offset in the shared segment. The
signal is then delivered to each receiver with the virtual address value mapping to this offset in the
shared segment. More simply defined, the virtual address delivered to a receiver points to the same
location in the shared segment as the virtual address specified by the signaling process.

Sender
Virtual Address Space

Shared Message
Region

Shared
Segment

Receiver
Virtual Address Space

Shared Message
Region

Receiver
Virtual Address Space

Shared Message
Region

Figure 2: Address-valued Signaling for Notification

In the current and expected use of memory-based messaging, a process sending a message writes
the message data into a free area of the message region associated with the destination process(es)
and then signals using the virtual address of this free area. The signal handler in each recipient
is called with the (translated) address of this message, and the signal handler uses this address
to access the new message and deliver it to the application. Protocols and conventions required
between processes to set up shared segments, manage the allocation and release of message areas in
the shared segment and define the actual message representation are discussed further in Section 4.

2A region refers to a range of a virtual address space.

3.1.1 Kernel Interface

The following kernel calls support address-valued signals in our system.

• SignalHandler(char *vaddr, int vaddrSize, void (*sigFunction)(char *vaddr));

Specify the signal-handling procedure sigFunction on the address range specified by vaddr
and vaddrSize.

• SignaKchar *vaddr) ;

Generate an ad dress-valued signal for the specified address.

• Time SigWait(Time t);

Delay a process until a signal arrives or until the requested time interval t has passed. The
amount of time remaining from the requested time is returned.

The signal procedure specified for a given region is executed by a designated thread of control
or process associated with this enabled region. This is normally the process that set the signal
handler by calling SignalHandler. As in other systems such as Unix that employ software signal
mechanisms, this process can either wait explicitly for signals using SigWait or simply receive and
process signals as asynchronous procedure calls during its execution. The timeout parameter for
SigWait efficiently supports the common case of a process waiting for a signal or a timeout period,
whichever comes first.

With appropriate hardware support, described in Section 3.1.2, a signal can be generated di-
rectly by writing a memory location, normally as part of writing a message into the message
segment. The Signal call is used in the absence of this hardware support. It is also used when a
signal is to be sent without writing a message, given that the signal mechanism can be used as a
general notification mechanism for shared data structures.

A process can specify signal handlers on several different regions simultaneously, and multiple
processes in the same address space can have separate signal handlers on the same region, with
signals being delivered concurrently to their respective processes. Signals to the same process are
delivered in FIFO order, rather than stacking the signals to provide a LIFO ordering. To date,
FIFO delivery and non-blocking synchronization techniques in our implementation have obviated
the need for enabling and disabling signals during signal handling as is common practice in Unix.

Address-valued signals have no associated priority but are executed with the priority of the pro-
cess that executes the signal handler. Processes with different priorities can enable signal handlers
on regions of memory so that each memory region represents a different signal priority. Supporting
separate signal priorities would require a set of buffers, one for each priority, and a mechanism to
communicate the signal's priority to the memory system hardware. Given the complex logic and
the redundancy with process priority, the hardware cost of prioritized signaling appears unjustified.

3.1.2 Implementation

Address-valued signaling is implemented in a combination of hardware and software.
The hardware provides a per-processor FIFO buffer that stores memory addresses representing

signals delivered to this processor but not yet processed. The signaled processors are determined
from the physical address of the signal (translated from the virtual address provided by the sender)
combined with the cache directory entry for the cache fine specified by the physical address. In
particular, each cache line has a cache directory entry containing a 3-bit mode and various other
tag bits describing its state, as shown in Fig. 3.

NIMM G p • • • P, p„ n 10

Figure 3: Hardware Cache Directory Entry

The mode (MMM) field encodes the conventional shared, private and invalid states of an
ownership-based consistency protocol as well as a special message mode. The tag bits include a set
of dual purpose P{ bits, one per processor sharing the cache. In shared mode, these bits indicate
the processors with copies of the cache line. In message mode, the P; bits indicate the processors to
be signaled on this cache line. The memory system architecture uses a hierarchical cache structure
(Fig. 4), with a "global" bit indicating notification to the next lower level of the memory hierarchy.
The lower level maintains its own cache directory and further propagates the signal to other clusters
of processors, as indicated by its cache tags. The tag bits are stored in software-maintained page
frame descriptors and are fetched when a cache block is loaded from memory into the cache.

Processor

L1 cache

Processor

L1 cache

Cluster

GPPPP
321 0

L2 cache

Processor

L1 cache

GPPPP
3210

L3 cache

Processor

L1 cache

GPPPP
321 0

L2 cache
X

fiber
optic

network
interface

other
cluster

(or switch)

Figure 4: Multiprocessor Architecture

The software portion of the implementation is built using the existing virtual memory data
structures. These data structures are similar to those in most modern operating systems sup-
porting mapped files and shared segments. In particular, a memory region descriptor records the
function and stack pointer for the signal handler on that region, if any. The mapping of signal
physical address to virtual address(es) and process(es) uses the standard inverse page mapping
data structures required in the virtual memory system. Our implementation also includes as an
optimization a fast hash table that maps physical addresses to virtual addresses.

When a process writes a message cache line, the hardware generates a signal on that virtual
address, what we call automatic signal-on-write, and maps the referenced virtual address to a
physical address, using the normal virtual-to-physical address translation mechanism (TLB or page
tables). The physical address is then mapped in hardware to a cache directory entry. The cache
controller generates signals to all processors indicated by the cache tags as recipients, including the
next lower level cache if the G bit is set. For example, when a write occurs to an L2 cache entry
that is in message mode and whose G bit is set (see Fig. 4), the signal is forwarded to the L3 cache
which then propagates the signal further as appropriate. The signal is transmitted over each bus as

a special bus transaction specifying the address and control lines of the affected processors3. When
a processor receives a signal bus transaction, its bus interface stores the address in the processor's
FIFO buffer and interrupts the processor. In our current implementation, each FIFO buffer has
128 entries so signal loss is very unlikely, but not impossible. When a processor receives the signal
interrupt, it takes the next physical address from its FIFO buffer, translates it to the corresponding
local virtual address and delivers the signal to each local process associated with this signal area.

Delivery of the signal is similar to Unix signal delivery when the process is not executing
a signal handler: the kernel saves the process context, creates a stack frame to call the signal
handler associated with the signaled memory region and passes the translated signal address as the
parameter. On return from the signal handler, the process resumes without reentering the kernel.
Trapping to the kernel after the signal handler finishes is avoided by storing the process context in
user-accessible memory and setting up the process stack to return to a run-time library function
that restores the process context. This optimization is compatible with all the processors supported
by our system, including the MIPS R3000 and the Motorola 68040. If a process is already executing
a signal handler at the time of signal delivery, the signal is queued in a signal FIFO page associated
with the process or dropped if this area is full. The signal delivery code is similar to that used to
implement our emulator signals [7] and exception-handling.

On systems without hardware support for automatic signal-on-write, a signal can be generated
by a kernel operation. In this case, the signal support code uses a fast virtual to physical mapping
function based on the TLB mapping mechanism used by the virtual memory mechanism.

3.1.3 Advantages

Address-valued signaling provides a simple efficient notification mechanism for memory-based mes-
saging. The translated signal address provides a direct, immediate and asynchronous message
specification to the recipient(s), allowing each recipient to immediately locate the message within
the segment. In particular, the same signal handler procedure can be used for several different
segments and still immediately locate the signaled message using the supplied virtual address. The
application can also have different signal handlers bound to different memory regions. The par-
ticular signal handler is selected automatically based on the region of memory in which the signal
occurs.

In contrast to our scheme, conventional Unix signals provide no ability to pass such a parameter
and thus either require the recipient to either search for the message or be tied to some fixed
convention on the location of the next message, and presumably use a per-segment signal handler.
For example, a familiar approach in Unix is to map all asynchronous I/O to the same signal (SIGIO)
and then use a select operation, with the resulting extra system call and overhead, in the signal
handler to determine the file or device on which to act.4

Address-valued signaling is also significantly more efficient than the Unix System V msgsnd and
msgrcv system calls and conventional message primitives of the various message-based operating
systems, as shown in Section 5.

Address-valued signaling allows an efficient, scalable hardware implementation, resulting in
reduced processor and memory system overhead as the system configuration is scaled. The FIFO
buffer eliminates the need for software delivery of the address values and for synchronized software
queues to hold those addresses. Shared memory message queues and their associated locks cause
significant memory system overhead in larger scale systems because of the potentially high memory

It is possible with direct cache-to-cache transfer, to transmit the cache line as part of the same bus transaction
but this optimization is not currently supported by our hardware.

4 Address-valued signals can easily subsume Unix signals by designating a unique set of virtual memory addresses
that map to standard Unix signal numbers.

contention on the queue data structures. In particular, two or more processors in widely separated
portions of the memory system contending for a shared queue can produce thrashing of the cache
line(s) holding the queue lock and data.

Finally, implementation of address-valued signaling is relatively simple, both in hardware and
software. The implementation takes advantage of the conventional virtual memory mapping hard-
ware and software data structures to deliver signals to the appropriate signal handler within the
desired process. Because address-valued signals are integrated with the memory system, there is
no need for a separate mapping, queuing and protection mechanism, as arises with conventional
message-based operating systems and the Unix System V message facilities.

The additional hardware to support address-valued signaling is a small percentage of the overall
hardware cost (less than 1% in our implementation), and arguably close to zero cost in large
configurations. In fact, the most significant hardware component, a per-processor FIFO buffer to
store signal values, is required for interprocessor and device interrupts on large-scale systems in
any case because the conventional dedicated bus line from interrupter to interruptee is not feasible.
The FIFO buffer stores the interrupt, allowing the sending processor or device to send the interrupt
across the interconnection network and not hold a connection.5 Storing a single address, rather
than the entire message, costs essentially the same as storing a potentially smaller value such as
processor identifier or device identifier. We note that all device interrupts in our system are handled
as address-valued signals, unifying and simplifying the hardware and OS software around this one
general mechanism and avoiding the conventional ad hoc techniques used with devices.

In an extended implementation, the time to deliver a signal to a process could be significantly
reduced by using a reverse TLB and a processor specifically designed to support memory-based
messaging. The reverse TLB (RTLB) would provide translation from a physical address to a signal
PC, virtual address and priority. (The priority could be stored in the lower-order bits of the virtual
address to avoid having a separate field in the RTLB.) If a physical address did not match any of
the RTLB entries, the RTLB would provide a fixed value for the signal PC and pass through the
physical address as the virtual address value. On an interrupt signal, the processor would read
the interrupt PC, virtual address and priority from a reverse TLB. In the interrupt mode specified
by the priority, it would then branch to the specified interrupt PC with the virtual address in a
register. (One level of priority would designate user mode.) The operating system software would
load the RTLB on each process context switch when the new process had signals defined.6 Based
on our experience to date, we believe that a 4-8 entry RTLB would perform well. Thus, with this
extension, a signal handler would be called in user space with no operating system intervention, at
least in the expected case. Therefore, the time from the point a signal is generated to the execution
of the user-defined signal handler code would be less than 7 processor cycles.

The extended design appears feasible even for RISC processor design for several reasons. First,
current RISC processors already perform similar actions on interrupts, exceptions and resets: they
read an address to branch to, set the interrupt priority and set a cause register (as in the R4000
architecture). This extension simply requires these values to come from the RTLB, rather than
some fixed interrupt vector. Second, the RTLB is small and could use a similar design to those used
with standard TLBs. Thus, putting it on the processor chip is only a matter of chip real estate.
If processor chip real estate is tight, the RTLB could be integrated with the FIFO mechanism

5A separate synchronization bus has been used in small-scale multiprocessors, such as the SGI Power Series, but
this approach appears even more expensive.

6This mechanism would not handle the case of a signal that was enabled on more than one process executing on
the same processor. For this case, the standard kernel signal handler would be invoked, using the implementation we
have completed and described in the rest of this paper.

at the cost of having to transfer more from the FIFO to the processor on an interrupt. Finally,
this mechanism could replace the conventional interrupt and exception mechanism, especially if the
RTLB is integrated in the processor chip. For example, with a R4000-like architecture revised along
these lines, the cause register would be replaced by a "signal address register" and, on exception,
the exception type could be encoded in well-known values placed in this register by the exception
mechanism. This extension simply generalizes ad hoc techniques in the interrupt mechanisms of
RISC processors and does not add significant additional control logic or any new registers.

3.2 Message-Oriented Memory Consistency

Message-oriented memory consistency is a consistency mode for a memory segment in which the
reader of the segment is only guaranteed to see the last write to this memory after it has received
an address-valued signal on the segment. In fact, if a message and signal are lost, the receiver is
not guaranteed to see the update at all. Moreover, the message can be overwritten by a subsequent
message in the FIFO buffer even before the receiver reads it. These semantics match those of a
network receive buffer. That is, a process can only expect a new packet to be available after an
interrupt from the interface, not at the time it is written. Also, if a packet is not received, or is
received in a corrupted form, or is overwritten, the data is not available at all. (Section 4 describes
our techniques for detecting and recovering from these errors.)

3.2.1 Kernel Interface
Message-oriented memory consistency is specified as a property of a segment at the time of its
creation using the CreateSegment system call in the extended V kernel.

• Segment *CreateSegment(int attributes, int mode, int flags, int error);

Create a segment that, assuming the mode parameter is set to MESSAGE-CONSISTENCY, uses
message-oriented consistency. On a machine that provides hardware support for this model,
this information is stored in the cache directory. The flags parameter can be set to
CACHE-LINE or PAGE and indicates the unit on which to signal, and thus the unit of mes-
sage consistency. For example, if it is set to CACHE-LINE an address-valued signal is generated
when the sending process writes the end of a cache line.

The CreateSegment operation is roughly equivalent to the Unix System V shmget or the BSD
Unix open system calls. These segments are also similar to BSD Unix mmap'ed open files.

Memory segments with message-oriented memory consistency are intended to be used unidi-
rectionally as part of memory-based messaging. One process binds the segment as writable and
others bind it as read-only. Consequently, there is generally a single writer for a set of addresses
within the segment. However, a shared channel may also have multiple writers, just like a CB radio
channel. For example, clients may use a well-known channel to multicast to locate a server.

3.2.2 Implementation
The message-oriented consistency is implemented by an additional mode for each cache line, as
mentioned in Section 3.1.2. In our implementation, because there were extra code values available
beyond those used by the conventional shared memory states, the message mode did not increase
the cost per cache directory entry. In the worst-case, it would require an extra bit per cache
directory entry, still a small percentage space overhead.

The implementation also requires extra logic in the cache controller to handle message mode.
This logic is relatively simple because message mode modifies actions already performed by the
cache controller as part of implementing the shared memory consistency protocol, and does not
introduce new types of actions. For example, message mode requires the cache controller to generate

an invalidation at each recipient processor after the cache line was written 7. This action parallels
the invalidations that the cache controller requests on a cache line in conventional shared memory
mode when it makes the transition from shared to exclusively owned.

Message-oriented memory consistency benefits from a processor providing non-privileged in-
structions to invalidate a cache line or page associated with a virtual address. This support allows
the application (or run-time library code) to explicitly control the consistency of its memory. One
example of this kind of instruction can be found on the MIPS R4000 processor. The CACHE
control instruction [18] can be executed from user mode to push a specified cache line from the Ll
(or L2) cache. However, the instruction only pushes a single cache line. No page push is provided.
In our current system, the MC68040 only provides cache control instructions that operate in priv-
ileged mode using physical addresses. This shortcoming limits the performance because message
area invalidation requires the kernel involvement,

With hardware support for direct cache-to-cache transfer, the source processor's cache can
directly transfer the cache line toward the recipient processors' caches, thereby providing data
transfer and notification in a single bus transaction when the processors are on the same bus. This
mechanism avoids the cache line transfer that normally follows the bus transaction to deliver the
signal (causing invalidation and rereading of the cache line from the next level of memory or cache).
Thus, direct cache-to-cache delivery reduces latency and reduces the number of bus transactions
to deliver the message. However, delivering the message directly into the first-level cache of a
processor has several disadvantages. First, a message, especially a large one, can cause replacement
interference with other cache lines in the cache, degrading the performance of the processor overall,
especially if it does not handle the message immediately. This delivery method can also stall the
processor by contending with the processor for access to the Ll cache during message delivery.
Finally, direct transfer into the Ll cache does not provide much benefit because the time required
to trap in the message from the second-level cache is minimal.

3.2.3 Advantages

Compared with conventional memory consistency, message-oriented memory consistency reduces
the number of bus transactions required to send a message by collapsing the receiver's message
invalidation, the signaling interrupt, the message transfer and corresponding acknowledgements into
a single message delivery transaction, as shown in Fig 5. In particular, message-oriented memory
consistency allows the memory system to simply send the update when the message unit has been
written, rather than having to invalidate the receivers' copies of each cache line being written by
the sender. Directly sending the update also allows the signal notification to be piggybacked on
the data transfer, or vice versa, rather than requiring a separate bus transaction for notification.
Thus, the update traffic matches in behavior and efficiency that of a specialized communication
facility. In contrast to write-update consistency protocols (which are really only practical in tightly-
coupled hardware), message-oriented memory consistency allows updates after a full cache line or
page (depending on the consistency unit) rather than on each word write. In that vein, message-
oriented memory consistency on single cache-line messages allows the sender to ensure that the
receiver sees either all or none of the message, rather than receiving word-level updates. We exploit
this property in our implementation of higher-level protocols.

The message-oriented memory consistency semantics also allow a simple network implementa-
tion of a shared channel segment between two or more network nodes. In particular, an update
generated at one node can be simply transmitted as a datagram to the set of nodes that also bind

7In our particular implementation, It is even faster (and simpler) to have the signaled processors invalidate the
appropriate portion of their respective first-level caches, eliminating even this complexity from the cache controller.

10

Sending Receiving
Cache Cache

1 3 5 2 4

\
^

Shared

'/

Cache

Receiving
Cache

Consistent Shared Memory

1. invalidate receiver copy
2. acknowledge
3. interrupt receiver
4. flush sender copy
5. acknowledge with data

Message-Oriented Consistency

1. deliver message

Figure 5: Reduced Memory Traffic for Message-Oriented Memory Consistency

the affected shared segment. The best-efforts, but unreliable update semantics of message-oriented
consistency obviates the complexity of handling retransmission, timeout and error reporting at the
memory level. A large-scale multiprocessor configuration can similarly afford to discard such bus
and interconnection network traffic under load or error conditions without violating the consis-
tency semantics. Section 4 describes techniques for building reliable communication on top of this
best-efforts communication support.

Finally, message-oriented consistency minimizes the interference between source and destination
processors. The sending processor is not delayed to gain exclusive ownership of the cache line and
the reading processors are not delayed by cache line flushes to provide consistent data. In contrast
to other relaxed memory consistency models such as Stanford's DASH release consistency [16],
message-oriented consistency reduces the base number of bus transactions and invalidations re-
quired, rather than just reordering them or allowing them to execute asynchronously.

3.3 Automatic Signal-on-Write
Automatic signal-on-write hardware support generates a signal when the last byte or word of a
cache line in a message segment is written.8 Consequently, a sending process avoids the overhead
of an explicit kernel Signal operation. In fact, in the case of the signal only being delivered to
processes on other processors, the sending processor incurs no overhead for signaling the message
beyond the store operations required to write the message.

In our implementation, there is both a signaling and a non-signaling message-oriented memory
mode for cache lines, with only the former causing an interrupt. Using this mechanism, the signal-
on-write can be programmed to occur only on the last word of a page (or other multiple of the
cache line), rather than strictly on each cache fine.

8It would be relatively trivial for the hardware to signal on any other portion of the cache line, but we have found
the last byte to be the easiest convention to use.

11

3.3.1 Implementation

Automatic signal-on-write is implemented as a relatively minor extension of the cache controller.
The cache controller monitors each write operation to the cache. If a write operation is to a cache
line in message mode and the address is the last address of the cache line, the cache controller
generates a signal bus transaction after allowing the write to complete.

In our hardware implementation, the on-chip, or LI, cache does not support this logic. Conse-
quently, the sender writes through the LI cache so that the L2 cache controller can detect last-byte
writes, and generate the signal. Ideally, the first-level cache controller should support this mech-
anism. From our implementation experience, this support would add very little complexity to an
on-chip cache controller.

3.3.2 Advantages

Automatic signal-on-write reduces the overhead on a sending processor when no local process is to
receive the signal. Reduced sender overhead, in turn, shortens the latency of message delivery. In
the absence of this facility, the sending process must explicitly execute a kernel call, map the signal
virtual address to a physical address and then presumably access hardware facilities to generate the
signal, or at least some interprocessor interrupt. In our experience, providing kernel-level access
to the cache controller to explicitly generate a signal is more expensive in hardware than simply
providing the logic in the cache controller itself to detect and act on writes to the end of a cache
line in message mode.

Automatic signal-on-write also allows the channel segment to specify the unit of signaling,
transparently to the sending process. For example, a receiver can pass the sender a channel that
signals on every cache line or every page, depending on the receiver's choice. Without automatic
signal-on-write, the sender needs to explicitly signal and thus needs to be coded explicitly for each
signaling behavior, perhaps switching between different behaviors based on the channel type.

Optimized memory-based messaging was implemented in the ParaDiGM hardware and in an
extended version of the V kernel. The memory-based messaging support replaced the previous
kernel message support for RPC, resulting in significant performance improvement (see Section 5).
This replacement also reduced the lines of code in our kernel by 15% and provided support for
signals, which were not supported in our original system. The hardware support for memory-
based messaging in ParaDiGM added approximately 6% to the logic of the cache controller. On
a commercial machine, we estimate that the additional logic would easily fit within the cache
controller ASIC and therefore would not increase manufacturing costs. Finally, the 128-entry FIFO
buffer per processor added 6% to the per-processor cost, totaling from 12% to 21% of the CPU
board costs [19]. The extra logic constituted less than 1% of the hardware cost for a complete four-
processor board. Moreover, this hardware is needed in any case for large-scale interrupt support.
Overall, we conclude that this approach reduces hardware costs compared to the multiple ad hoc
interprocessor schemes used in many current systems.

The next section describes the user-level library implementing RPC in replacement for the
previous kernel support.

4 Remote Procedure Call Implementation
The remote procedure call facility, including the transport layer, is implemented on top of memory-
based messaging in an application-linked run-time library. This approach contrasts with a kernel
implementation as in V [6] and Amoeba [23], and the separate network server implementation as
in Mach [1].

There is a unidirectional memory-based messaging channel segment from the client to the server
and a similar unidirectional return channel from server to client. To call the server, the client

12

writes a message containing the RPC parameters and stub identification to the server's incoming
channel segment and sends an address-valued signal to the server. Upon receiving the signal, the
server processes the message by unmarshaling the arguments onto a stack, calling the appropriate
procedure, as in a conventional implementation, writing the return values as a message on the
return channel and signaling the client. The client then receives the signal indicating the response
has been sent and unmarshals the response.

The client establishes these channels with the server by contacting the server using a well-known
shared channel segment associated with the server, similar to the well-known multicast addresses
used in previous systems. On this first contact, the client provides request and response channel
segments to which the server then binds, specifying a memory region and an RPC signal handler.

To ensure reliable delivery of RPC call and return messages, standard transport protocol tech-
niques are implemented as part of the process-level RPC implementation, similar to, for example,
an ONC RPC implementation on top of UDP. In particular, a checksum is used on the message
to ensure that all portions of the message were received. Using "integrated layer processing" [12],
the checksum calculation cost is not significant when integrated with the data copy. The data
copy is required as part of marshaling and unmarshaling parameters at either end of the channel
segment. For instance, a checksum calculation with the copy operation on a 25 MHz DecStation
5000/200 adds 8% to the copy time. A message that fails the checksum is normally discarded, as
in conventional transport protocols. The unmarshaling copy operation also prevents the received
parameters from being overwritten while the receiver is processing the call. That is, because the
call parameters have been moved from the message segment area, a subsequent overwriting message
cannot affect the call processing. In fact, the checksum is calculated as part of the unmarshaling
copy so that it can safely detect an overwrite of the message during the unmarshaling.

Lost or dropped messages are detected and handled by an asynchronous timer process. The
timer process simply reviews the set of outstanding calls periodically and requests retransmissions
if there has not been a response or acknowledgement within the timeout period. Because the timer
process operates asynchronously and independently of the message sending, the normal case of
sending a call and getting a response when the packets are not lost operates without the timer
overhead required in conventional transport protocols.

Similar transport protocol techniques or even standard transport protocols can be used for data
streaming over channel segments.

Using a full transport protocol for local (or inter-address space) calls is a novel and contentious
aspect of our approach. There is the obvious concern that this approach unnecessarily degrades local
communication performance. However, it is the preferred approach with memory-based messaging
for several reasons. First, the cost of the transport-level mechanism is not significant in the local
case. The cost of a simple checksum calculation such as used with TCP is dominated by the
memory access time to the data. By integrating this calculation with the data copy, as described
earlier, the cost is hidden by the memory access latencies of the copy operation, at least on modern
RISC processors. Moreover, for small messages, the checksum cost is insignificant compared to the
other remote procedure call run-time overheads, such as scheduling the executing thread for the
procedure. The frequency of large messages for which the copy and checksum time is significant
is reduced by memory-mapping most of the I/O activity. In fact, the large messages that are not
subsumed by the memory-mapped I/O approach are predominantly communication with a network
file server, for which the checksum overhead is required, as in conventional systems. Moreover, bulk
flows like video do not require the same degree of reliable delivery and thus can be transmitted
without checksums.

The other significant transport mechanism, timeout and retransmission, executes asyn-

13

chronously to the call and return processing so, in the normal no-loss case, the overhead is a
small fixed percentage of the processor time. This cost can be made arbitrarily low by increasing
the timeout parameter. That is, with a timeout of T seconds and processing cost P seconds, the
processing overhead is PT per second. With signal loss, which is expected to be extremely rare in
the local case, the cost in system performance is dominated by the time to timeout and retransmit.9

Second, implementing reliable transport for local calls allows the RPC run-time library to use
the same mechanism for local and remote calls, avoiding the overhead and complexity of checking
whether a channel is local or remote on each call. Channel segments appear the same to the software
outside the kernel whether they connect within a machine or span multiple machines. Moreover,
because a channel can be rebound during its lifetime so that its endpoint is remote rather than local,
the RPC mechanism would need to either check with the kernel on each call or be reliably notified
of the rebinding. The former would incur a significant overhead, estimated to be comparable to
the 8 percent overhead we measure for the checksum calculation on the common "small" RPCs,
obviating the benefit of discriminating between local and remote segments. The latter approach
requires additional code complexity in the RPC mechanism.

Finally, providing software support for reliable delivery allows the hardware in large-scale mul-
tiprocessors to be much simpler. For example, in our hardware implementation, signals can be lost
because of a local FIFO buffer overflow, although this is unlikely. Preventing overflows in hardware
would require some form of flow control. Flow control is difficult to do across a large-scale intercon-
nection network, and is virtually impossible with multicast communication. A significant source of
cost and complexity in the CM-5 communication networks is the hardware to ensure reliable mes-
sage delivery. Moreover, even in such hardware schemes, there is still a software overhead to check
for overflow conditions. Therefore, providing a full transport mechanism in the local case reduces
the requirements and cost of the hardware, and suggests that one could tolerate more hardware
faults, as is expected with networking.

The remote procedure and transport mechanism is implemented in our system as a C++ class
library executing in the application address space, and is well-structured for specializing for par-
ticular applications, including those that do not require full reliability. A basic channel mechanism
in the class library supports a raw form of communication and does not impose the transport level
overhead for this type of traffic. For instance, a channel segment is well-suited for real-time mul-
ticast datagram traffic like raw video because data units are being rapidly updated by the source,
and the occasional dropped cache line unit or lost signal does not significantly affect the quality of
the resulting picture. Note that dropped cache line updates do not put the data out of sequence in
any sense because each cache line is specifically addressed with its local address within the chan-
nel segment. Derived classes of the basic channel class provide the reliable transport mechanisms
described above.

In summary, the best-efforts reliability of our memory-based messaging support allows better
performance with scale at a lower hardware cost, transfers the complexity of ensuring reliable
communication, when needed, from hardware to software and avoids having separate mechanisms
in the application space for local and remote communication. The next section provides some
performance measurements of our implementation.

5 Performance Evaluation
The performance of optimized memory-based messaging was evaluated using an extended version of
the V distributed system [9] and the ParaDiGM multiprocessor [11]. The specific configuration is an

9To deal with the potential of dropped signals from devices, our device drivers periodically check the device
interface for activity rather than requiring the device hardware to retransmit.

14

Component Software-Only Hardware- Supported
Time Instr. Time Instr.

sender system call 3 13 - -
virtual-to-physical mapping 3 16 - -
determine receiving processors 4 23 - -
insert in kernel queue 6 55 - -
generate interrupt 1 4 - -
get physical address from FIFO - - 2 11
remove from kernel queue 6 45 - -
physical-to-virtual mapping 1 9 1 9
invalidate LI cache lines - 7 1 7
check if kernel is receiver 1 4 1 4
signal function scheduling 6 37 6 37
return to user code 4 25 4 25
user-level state save/restore 1 11 1 11
Total 36 249 16 104

Table 1: Hardware-Supported vs. Software-Only Implementations

8-processor shared memory multiprocessor configuration consisting of two multiprocessor modules
each containing four Motorola (25 Mhz) 68040 processors sharing an L2 cache that supports our
optimizations. As in Fig. 4, multiple multiprocessor boards share an L3 cache, where the consistency
is controlled by kernel software. Although this hardware that we designed and implemented is not
the fastest available at this time, we argue that the logical design is applicable to much faster
processors, and a faster processor would not significantly reduce the benefits of our optimizations
(see Section 6).

5.1 Hardware Performance Benefits
To evaluate the benefits of the hardware optimizations, a software-only implementation of memory-
based messaging was developed as a basis for comparison. In this implementation, the sender traps
to the kernel, and uses a queue and inter-processor interrupt to notify the receiver of the signal.

Table 1 compares this software-only version with our optimized messaging implementation,
listing the execution times (and MC68040 instruction counts) of various kernel and user-level com-
ponents for these two implementations. These measurements show that using all three hardware
optimizations provide a factor of two reduction in kernel overhead even in a small-scale system.
This reduction is achieved by hardware support that eliminates the instructions required to deliver
the signal value to the appropriate processor. Delivery of a message from the signaled processor
to specific processes would be reduced significantly in the common case using a reverse TLB (See
Section 3.1.3).

Section 6 shows that even greater benefit can be expected for future larger-scale systems, because
message delivery using the shared data structures of the software-only implementation becomes
more expensive with a larger-scale shared memory system.

5.2 Remote Procedure Call Measurements

Table 2 provides a breakdown of the components of the RPC implementation using optimized
memory-based messaging, not including the memory-based messaging costs detailed in Table 1.
The majority of the time is spent on marshaling and demarshaling. The mapping between object

15

Component Request/Reply Time
map from object to channel
marshal 32-bytes
trigger signal
map from channel to object
unmarshal 32-bytes

1
2
1
1
2

Total 7

Table 2: RPC Component Timings (yttsecs)

System Call Execution Time
Create Segment 582
Bind Memory Region 320
Enable Signal 249
Disable Signal 231
Unbind Memory Region 243
Release Segment 636

Table 3: Setup Cost Timings (/jsecs)

and channel, and vice versa, is the other major component.
The total latency of a 32-byte RPC between two processors sharing an L2 cache is 47 //sees.

This performance is 2.6 times faster than the software-only version of memory-based messaging
RPC, which takes 124 fisecs.

A 32-byte RPC between processors, on separate L2 caches, sharing an L3 cache takes 127 /xsecs
("Opt. MBM (L3)" in Table 4). The corresponding software-only RPC takes 1860 fisecs. (Both
L3 times are somewhat inflated because of the partially-optimized software L3 cache consistency
support in the current implementation.)

These measurements do not include the costs of creating and destroying the channel segments
and binding them into the memory of the respective address spaces, as required before RPCs can be
executed. In our object-oriented RPC implementation, the setup is performed as part of creating a
local proxy object. Table 3 provides the basic setup and tear-down costs. Summing the execution
time column (omitting disable signal because it is subsumed by unbinding the memory region),
connecting to a new object and then disconnecting can take 2030 /jsecs. Thus, a significant number
of RPCs need to be performed over a channel to amortize this overhead to a small percentage. In
earlier measurements of V [8], we observed a high degree of persistence in communication between
clients and servers, and a small number of such pairings. Thus, we expect this setup overhead to
be acceptable, if not insignificant, when amortized over the typical number of RPCs that use a
channel segment during its lifetime. However, the setup time should definitely be factored into the
RPC time for applications with many short-lived connections.

5.3 Comparison with Previous Systems
For comparison, Table 4 shows published RPC times for previous message-based operating systems.
These measurements indicate that optimized memory-based messaging RPC (labeled "Opt. MBM
(L2)") is clearly faster than the original V system. The V performance suffers from several factors.
First, the V copy model of messaging imposes a copying overhead that is not present with memory-

16

System Null RPC Send, Recv
32 bytes

Send 1KB Processor MIPS

Opt. MBM (L2) 44 47 215 68040 15
Opt. MBM (L3) 120 127 502 (est.) 68040 15
Soft MBM (L2) 121 124 268 68040 15
Soft MBM (L3) 1857 1860 12580 68040 15
Mach 3.0 95 98 (est.) 268 (est.) DEC 3100 14.3
V System 469 (est.) 472 794 68040 15
URPC 93 99 (est.) 608 (est.) Firefly 3
LRPC 125 131 (est.) 640 Firefly 3

Table 4: Comparative RPC Timings (/jsecs)

based messaging. Second, there are many "on-the-fly" actions performed on each RPC because
there is no connection setup prior to sending a V message. These actions are eliminated by the
connection setup with memory-based messaging. Finally, the V messaging requires a context switch
during the RPC.

The optimized memory-based messaging is also faster than Mach 3.0 (based on our estimates
from published figures for the 32-byte and 1-kilobyte messages). Mach 3.0 has a connection-oriented
model based on ports but still suffers from copy cost and context switching overhead.

The URPC and LRPC systems appear to be the most competitive with optimized memory-based
messaging mechanism. In fact, if one purely scales based on rough MIPS ratings, one might conclude
that URPC system is faster. However, we believe there are several considerations that still favor
optimized memory-based messaging. First, the published URPC time can only be achieved when
the server constantly polls client message channels and manages to find a client message immediately
after the client queues it. This polling mechanism does not appear practical in real systems where a
server would have a large number of clients. Moreover, the time to locate the particular requesting
client would be larger even if it was used. Second, both LRPC and URPC reduce the number of
copy operations by using parameters directly from the shared segment, eliminating the unmarshal
step. However, this technique relies on using the VAX's separate argument stack, a mechanism not
supported by modern RISC processors. Finally, the overhead of URPC shared memory references
to control the server's queue would make URPC substantially slower than our optimized messaging
for calls between processors widely separated in a large-scale memory system. The LRPC and
URPC measurements were done on the VAX-based Firefly multiprocessor on which a reference
to a write-shared datum incurs essentially the same cost as a private memory reference because
of the write-broadcast update protocol and the slow processors relative to the memory system.
However, a similar reference on a machine like ParaDiGM, DASH [16], KSR-1 and numerous forth-
coming architectures from Cray, Convex and others would cost approximately 100 cycles or more,
assuming the referenced data was last updated by another processor. Besides increasing the latency,
these shared memory references also impose an extra load (not present in optimized memory-based
messaging) on critical resources such as memory busses.

These measurements show that optimized memory-based messaging is competitive with the fast
RPC implementations of other systems. Moreover, memory-based messaging also provides data
streaming between address spaces at memory system performance, a facility not directly supported
by the other communication approaches. The next section shows that these benefits are even more
significant for future (large-scale) system configurations.

17

6 Benefits in Future Systems
The performance benefits for optimized memory-based messaging were estimated for future larger
and faster machines using a simple simulation. This simulation incorporates a cost model, based on
the factors we have identified in our implementation, with the actual costs scaled for the expected
hardware parameters. Using this simulation, a software-only implementation of memory-based
messaging was compared with configurations introducing each hardware enhancement. The case
measured is a message of 32 bytes, a cache line, sent to another processor, where a null signal
function is executed. In the simulations without hardware support, address-valued signaling was
performed using a software-controlled global queue to hold the virtual address of the message.
Similarly, conventional shared-memory consistency using a write-invalidate was assumed in place
of message-oriented consistency. Without hardware support for automatic signaling on write, the
model assumes that, after the message write, the sender traps to the kernel to execute the Signal
system call. (It could also generate the call after trapping on a reference to a write-protected
memory location, a technique used to emulate automatic signal on write.)

For these simulations, we measured our LI fill time to be 1.12 //sees for a 32-byte cache line.
An estimated hardware-supported L2 fill time is 3.36 jusecs. A single hop across our fiber optic link
transfer 32 bytes is 6.1 /xsecs.

c
o
5 c
<D

E
CD
Q.
E
2
CO

|
o

CO

o
CD _>
05

CD

tr
D.
ZJ
-o
CD
CD
C

CO

6 -

5 ■

4 ■

3 ■

2 ■

1 ■

0 ■

~M~—'— " - - '

—■— AVS + MOC + auto-signal-on-write
---»-- AVS + (MOC) message-oriented consistency
......... (AVS) Address-valued signal

! 3 4 5 i

Memory Level Traversed

Figure 6: Speedup of 32-byte cache line transfer vs. memory levels traversed (25 MHz Processor)

Fig 6 shows the speedup of a message transfer for optimized memory-based messaging compared
to a software-only implementation as a function of the distance traveled by the message. The values
of 2 and 3 on the x-axis correspond to a message delivered through an L2 cache and L3 cache
respectively. The values of 4, 5 and 6 correspond to one, two and three hops across a fiber optic
link.

The speedup is more significant for processors widely separated in the memory system because
the transfer is dominated by the cost of the bus/network transactions. Address-valued signaling
and message-oriented consistency reduce the number of such transactions compared to conventional
shared memory techniques, as was illustrated in Fig 5. Note that the number of transactions in
a conventional system on the L3 bus and network is effectively twice that of the L2 level because
of the use of split-transaction protocols in the lower cache levels. Thus, the savings from message-

18

oriented consistency are greater for these levels than the L2 level, both in reduced transactions as
well as reduced latency.

Increasing memory latency is an inherent problem in scalable shared-memory multiprocessors.
As the number of processors increases, the amount of physical memory required to satisfy those
processors must increase. To provide high-speed localized memory for each processor, the memory
is often distributed throughout the machine. With large amounts of memory spread throughout
the machine, varying kinds of interconnection technology are used. High-speed busses connect
the processor to the neighboring memory modules. Fiber optic network technology is used to
connect clusters of memory. Queuing delays encountered when packets are transferred from busses
to networks and at switching points can further increase latency. Although improving technology
is increasing the bandwidth of networks, the latency is still significant.

The message transfer speedup between processors local to an L2 cache results from the re-
duced software overheads of address-valued signaling and automatic-signal-write. The benefit of
the message-oriented consistency is reduced by the relatively high speed of the L2 bus in this case.

Approximately 79% of the speedup of a message transfer through an L2 cache and 56% of the
speedup through 3 hops of the fiber optic link is attributable to hardware support for address-
valued signaling. Message-oriented consistency accounts for 6% of the speedup of an L2 transfer
and 37% through 3 fiber optic links. Automatic signal-on-write support accounts for 15% of the
speedup of an L2 transfer and 7% through the 3 fiber optic links.

Fig 7 shows the benefits of the optimizations as a function of the processor speed. The processor

c o

c
CD

E
Q.
E

CO

"5
co
o

CD
cr
D.

TD
CD
CD
Q.

CO

- AVS + MOC + auto-signal-on-write
AVS + (MOC) message-oriented consistency
(AVS) Address-valued signal

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Processor Speed (normalized to 68040)

Figure 7: Speedup of 32-byte cache line transfer vs. processor speed (through shared L2 cache)

speed is normalized to the speed of the 68040. A faster processor is assumed to use a correspondingly
faster L2 bus. The base or 68040 L2 bus transfer time in this simulation is one 32-byte cache line
in 0.3 fisecs. A 32-byte message is assumed to transfer over a fiber optic fink in 2 /j,secs.

The increase in speedup with increasing processor speed in Fig. 7 shows that faster processors
simply emphasize the memory system latencies, even with a high-speed L2 bus. At higher processor
speeds, the costs of the software operations, such as physical to virtual address mapping, diminish,
affecting both implementations equally but leaving the relative speedup unchanged.

Fig 8 shows the speedup for a 32-byte message transfer as a function of processor speed over a

19

fiber optic link. This figure shows that the memory system overhead is again more apparent with

c

S '
c
CD
E 6-
a>
a.
f 5-

(5
5 4-

CO
O 3-

i - CO
CD

TJ

$ 0-

t- • • * '
—■— AVS + MOC + auto-signal-on-write
--■»--■ AVS + (MOC) message-oriented consistency
••••*-■ (AVS) Address-valued signal

Q.
CO

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Processor Speed (normalized to 68040)

Figure 8: Speedup of 32-byte cache line transfer vs. processor speed (fiber optic link)

faster processors. While faster processors allow faster message transfers, these gains are limited by
the latencies of a large-scale memory system. Optimized memory-based messaging minimizes the
actions required of the memory system, thereby providing scaling with increasing processor speed.

Overall, our simulation of larger and faster architectures suggests that optimized memory-
based messaging provides even greater benefits on these future machines because it optimizes for
the bottleneck resources, namely the memory system and its supporting interconnect. Moreover,
optimized memory-based messaging obviates the need for conventional interprocessor interrupts,
separate message mechanisms and I/O subsystem hardware.

7 Related Work
The original architectural support for optimized memory-based messaging was described by Cheri-
ton et al. [10] in a design that was refined and implemented as the ParaDiGM architecture [11].
While the basic design has remained largely the same, a number of refinements were made as part
of the ParaDiGM implementation and measurements. As an example, we discovered that it was
faster to invalidate a received cache line in software than to have the cache controller perform this
task.

The basic memory-based message model is similar to that used in the Berkeley DASH
project [25], URPC [3] and many commercial systems using shared memory for communication
between processes. Our contribution has been the refinement of the signaling and consistency
support and an efficient hardware and software implementation that further optimizes this com-
munication model.

The signaling mechanism has some similarity to the signal mechanism in Unix. However, the
extension and simplification to address-valued signaling provides a translated address optimized for
messaging and provides sufficient mechanism to accommodate Unix signal functionality. That is,
a well-known range of memory addresses could be allocated for Unix signals, with an address for
each Unix signal number.

A number of other systems provide a memory interface to communication facilities. However,
these systems are of a significantly different genre. For example, the Xerox Alto, the original SUN

20

workstation, the CM-5 and many other systems provide a location in memory to read and write to
receive and transmit network data. However, this approach is generally just providing a memory
port to a separate conventional communication mechanism which is not really integrated with
the memory system. In particular, each write operation to the communication interface requires
an uncached write operation over the interconnecting bus, rather than using the cache line block
transfer unit, as we have used.

The Alewife multiprocessor design [5,14] provides both shared-memory and messaging support.
The network interface supporting messaging is connected to the processor using the co-processor
interface on the SPARC-1 processor. The network interface supports a DMA engine, a sliding mes-
sage buffer window and specialized coprocessor instructions. Because this design allows messages
to transfer directly from and to the processor using the co-processor interface and thus bypass the
memory system, we expect that it might be marginally faster than our approach (no measurements
of Alewife were available at the time of writing). However, the Alewife approach depends on the
existence of a co-processor or similar interface devoted to messaging. Very few processors have such
an interface. Moreover, with the limits on chip pin count being an issue, it is more performance
effective to use these pins for wider access to memory than dedicating them to only communica-
tion support. The approach of integrating messaging support into the memory benefits from this
optimization of the memory system performance, rather than contending with the memory system
for pin count and design cycles.

Memnet [13] is another system that provides a memory model of communication. However, it
also uses special and separate communication hardware, using a consistency mechanism to drive
network transmissions to provide the illusion of a memory module shared by all the machines on
the network. This approach duplicates the memory system, at least for a shared memory multi-
processor, in a specialized communication subsystem and then makes it look like memory. Thus,
Memnet is the opposite to our approach, both in terms of model and mechanism, of integrating
the communication into the memory system.

Finally, previous performance work on pure software message systems and RPC has been domi-
nated by efforts to reduce the cost as close as possible to the raw copy cost (e.g., V [6], Amoeba [23]
and Taos [22]) and to reduce the copy cost itself (e.g., Mach [1] and URPC [3]). Mach uses the
copy model of IPC and optimizes it using memory mapping techniques, whereas the memory-based
messaging approach takes the memory mapping model and extends it for efficient communication.
We believe that the cache and interconnection structure of modern computer memory systems
makes the copy model of messaging inadequate, especially for high-performance communication
applications such as multi-media, simulation and high-performance I/O. Optimized memory-based
messaging, as one alternative, provides better and more scalable performance.

8 Conclusions
Optimized memory-based messaging has produced a communication facility that is simple and
efficient to use, cleanly and inexpensively implementable in software and hardware, and signifi-
cantly faster than the memory-based messaging support found in conventional operating systems
and hardware. The techniques are especially well-suited for larger scale and higher-performance
processors expected in the future.

Rather than invent yet another communication mechanism, we have focused on memory-based
messaging as a recognized but under-exploited software technique. Optimized memory-based mes-
saging model allows an efficient remote procedure call implemented outside the kernel. It also
supports high-performance real-time communication for video and graphics, application domains
that are expected to be increasingly important in the future.

21

The approach of providing communication in terms of the memory system has simplified both
the hardware and the software. The software implementation largely consists of extensions to the
basic virtual memory mechanisms already provided by the operating system kernel. For example,
the signaling mechanism uses the same data structures to map to recipients of a signal as the virtual
memory system uses for mapping addresses and the same signal delivery used for virtual access
signals (similar to SIGSEG) in Unix. With our operating system kernel, this approach is the only
communication and I/O facility provided, thus eliminating the buffering, queuing, synchronization
and mapping code and data structures used in most message-based operating system micro-kernels.

The hardware support is a simple, low-cost extension to the directory-based processor caches
that are increasingly common with shared memory multiprocessor machines. The three refinements
of address-valued signaling, message-oriented consistency and automatic signal-on-write comple-
ment each other to further simplify the hardware and improve performance. Based on our im-
plementation, we estimate that the additional hardware support costs to be less than 1% of the
multiprocessor board. The cost is less significant on a complete system so that hardware support
is affordable even for small-scale multiprocessors where the performance benefits are the least.

Our measurements of our software/hardware system show performance that compares favor-
ably with other high-performance interprocess communication facilities. Using simple performance
models, we have estimated that hardware-supported memory-based messages would offer approx-
imately a three-to-five fold improvement in performance for basic communication operations on
moderate to large-scale multiprocessor systems.

As part of our future work, we are addressing several issues. We are experimenting with
different schemes for efficiently mapping the RPC mechanism onto memory-based messaging to
allow specialization of RPCs for particular situations. For example, we are experimenting with a
non-blocking RPC with no return value, optimized for some distributed simulations. We are also
investigating the issues of moving large amounts of data using optimized memory-based messaging.
Finally, we are developing network hardware and channel management software to extend the
memory-based messaging over network links with non-trivial topologies.

Overall, based on our experience to date, optimized memory-based messaging appears to be a
promising approach for achieving cost-effective high-performance communication in future systems.
The central theme of our work integrates communications with the memory system model and
mechanism. This approach reduces the specialized system primitives and complexity required in
the conventional approaches to communication and provides performance gains in communication
by capitalizing on the well-motivated drive to improve memory system performance. From our
experience to date, we judge this approach as superior to approaches that provide communication
as a separate mechanism.

9 Acknowledgements
This work was sponsored in large part by the Defense Advanced Research Projects Agency under
Contract N00014-88-K-0619. Robert Kutter is supported by IBM. Kieran Harty developed the
virtual memory implementation and provided valuable assistance in the implementation of address-
valued signaling. Christophe Metivier developed the prototype hardware. Mendel Rosenblum, John
Chapin, Hugh Holbrook and Sandeep Singhal provided valuable comments during the development
of this paper. Wayne Mesard developed the kernel software that supports the cache protocols at
the L3 level.

References
[1] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid, Avadis Teva-

nian, and Michael Young. Mach: A New Kernel Foundation for UNIX development. In

22

USENIX Association Summer Conference Proceedings, pages 93-112. USENIX, June 1986.

[2] Maurice J. Bach. The Design of the UNIX Operating System. Prentice-Hall, Inc., 1986.

[3] Brian N. Bershad. High Performance Cross-Address Space Communication. PhD thesis, Uni-
versity of Washington, Department of Computer Science and Engineering, June 1990.

[4] David L. Black, Richard F. Rashid, David B. Golub, Charles R. Hill, and Robert V. Baron.
Translation Lookaside Buffer Consistency: A Software Approach. In Snd Int. Conference
on Architectural Support for Programming Languages and Operating Systems, pages 113-121.
ACM, April 1989.

[5] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS Directories: A Scalable
Cache Coherence Scheme. In 4th Int. Conference on Architectural Support for Programming
Languages and Operating Systems, pages 224-234. ACM, April 1991.

[6] David R. Cheriton. The V Distributed System. Communications of the ACM, pages 314-333,
March 1988.

[7] David R. Cheriton, Gregory R. Whitehead, and Edward W. Sznyter. Binary Emulation of
Unix using the V Kernel. In Usenix Summer Conference. Usenix, June 1990.

[8] David R. Cheriton and Cary Williamson. Network Measurement of the VMTP Request-
Response Protocol in the V Distributed System. In SIGMETRICS. ACM, 1987.

[9] D.R. Cheriton. The V distributed operating system. Communications of the ACM, 31(2):105-
115, February 1988.

[10] D.R. Cheriton, H.A. Goosen, and P.D. Boyle. Multi-level shared caching techniques for scal-
ability in VMP-MC. In Proc. 16th Int. Symp. on Computer Architecture, pages 16-24, May
1989.

[11] D.R. Cheriton, H.A. Goosen, and P.D. Boyle. ParaDiGM: A Highly Scalable Shared Memory
Multicomputer Architecture. IEEE Computer, 24(2):33-46, February 1991.

[12] D. D. Clark and D. L. Tennenhouse. Architectural Considerations for a New Generation of
Protocols. In Computer Communication Review, pages 200-208. ACM, September 1990.

[13] G. S. Delp. The Architecture and Implementation of Memnet: A High-Speed Shared-Memory
Computer Communication Network. PhD thesis, University of Delaware, Department of Elec-
trical Engineering, 1988.

[14] David Kranz et al. Integrating Message-Passing and Shared-Memory: Early Experience. SIG-
PLAN Notices, 28(1), September 1992.

[15] Robert P. Fitzgerald. A Performance Evaluation of the Integration of Virtual Memory Man-
agement and Inter-Process Communication in Accent. PhD thesis, Carnegie-Mellon University,
Department of Computer Science, October 1986.

[16] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Performance Evaluation of Memory
Consistency Models for Shared-Memory Multiprocessors. In Snd Int. Conference on Architec-
tural Support for Programming Languages and Operating Systems, pages 113-121. ACM, April
1989.

23

[17] Per Brinch Hansen. Operating System Principles. Englewood Cliffs, N.J., Prentice-Hall, 1973.

[18] Joe Heinrich. MIPS R4000 Microprocessor User's Manual. Prentice-Hall, Inc., 1993.

[19] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, Inc., 1990.

[20] David A. Patterson, Garth Gibson, and Randy H. Katz. A Case For Redundant Arrays of
Inexpensive Disks (RAID). In SIGMOD, pages 109-116. ACM, June 1988.

[21] Bryan S. Rosenburg. Low-Synchronization Translation Lookaside Buffer Consistency in Large-
Scale Shared-Memory Multiprocessors. In Proceedings of the Twelfth ACM Symposium on
Operating Systems Principles, pages 137-146. ACM, December 1989.

[22] Michael D. Schroeder and Michael Burrows. Performance of Firefly RPC. In Proceedings of
the Twelfth ACM Symposium on Operating Systems Principles, pages 83-90. ACM, December
1989.

[23] A. S. Tanenbaum et al. Experiences With The Amoeba Distributed Operating System. Com-
munications of the ACM, 33(12):46-63,1990.

[24] J. Torrellas, M.S. Lam, and J.L. Hennessy. Measurement, Analysis, and Improvement of the
Cache Behavior of Shared Data in Cache Coherent Multiprocessors. In Workshop on Scalable
Shared-Memory Architectures. Seattle, May 1990.

[25] Shin-Yuan Tzou and David P. Anderson. The Performance of Message-Passing Using Re-
stricted Virtual Memory Remapping. Software - Practice and Experience, 21(3):251-267,1991.

24

